Appendix_常见题型

型一 性质

  1. A3×3,A2A2E=0,det(A)=2\boldsymbol{A}_{3\times 3}, \boldsymbol{A}^{2}- \boldsymbol{A} - 2 \boldsymbol{E} = \boldsymbol{0}, \det(\boldsymbol{A}) = 2,求 A11+A22+A33A_{11} + A_{22} + A_{33} AX=λXX0(A2A2E)X=(λ2λ2)X=0λ2λ2=0λ1=2,λ2=1det(A)=λ1λ2λ3λ3=λ2=1A的特征值为1,2,2tr(A)=A11+A22+A33=3 \begin{array}{ll} & \text{令} \boldsymbol{AX} = \lambda \boldsymbol{X}\quad \boldsymbol{X} \ne \boldsymbol{0} \\ \therefore & (\boldsymbol{A}^{2} - \boldsymbol{A} - 2 \boldsymbol{E})\boldsymbol{X} = (\lambda^{2} - \lambda - 2)\boldsymbol{X} = \boldsymbol{0} \\ \therefore & \lambda^{2} - \lambda - 2 = 0 \Rightarrow \lambda_{1} = 2, \lambda_{2} = -1 \\ \because & \det(\boldsymbol{A}) = \lambda_{1}\lambda_{2}\lambda_{3} \\ \therefore & \lambda_{3} = \lambda_{2} = -1 \\ \therefore & \boldsymbol{A}^{*}\text{的特征值为} 1, -2 ,-2 \\ \therefore & \text{tr}(\boldsymbol{A}^{*}) = A_{11} + A_{22} + A_{33} = -3 \end{array}
  2. α=(112)\boldsymbol{\alpha} = \left( \begin{smallmatrix} 1 \\ 1 \\ 2 \end{smallmatrix} \right) 为矩阵 A=(1336x6y913)\boldsymbol{A} = \left( \begin{smallmatrix} 1 & -3 & 3 \\ 6 & x & -6 \\ y & -9 &13 \end{smallmatrix} \right) 的逆矩阵 A1\boldsymbol{A}^{-1} 的特征向量,求 x,yx,yA1\boldsymbol{A}^{-1} 的特征值 μ\mu 由题意得αA的特征向量Aα=λαAα=(4x6y+17)=λα41=x61=y+172x=10,y=9,λ=4μ=1λ=14 \begin{array}{ll} & \text{由题意得}\boldsymbol{\alpha}\text{为}\boldsymbol{A}\text{的特征向量} \\ \therefore & \boldsymbol{A\alpha} = \lambda \boldsymbol{\alpha}\\ & \boldsymbol{A\alpha}= \left( \begin{smallmatrix} 4 \\ x-6 \\ y+17 \end{smallmatrix} \right) = \lambda \alpha \\ \therefore & \frac{4}{1} = \frac{x-6}{1} = \frac{y+17}{2} \\ \therefore & x = 10, y = -9,\lambda = 4\\ \therefore & \mu = \frac{1}{\lambda} = \frac{1}{4} \end{array}

型二 求 λ\lambda

方法

  1. 公式法 det(λEA)=0\det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0
  2. 定义法 AX=λXX0\boldsymbol{AX} = \lambda X \quad \boldsymbol{X} \ne \boldsymbol{0}
    • 特征 f(A),AB=Cf(\boldsymbol{A}), \boldsymbol{AB} = \boldsymbol{C}
  3. 关联法 {A,A1,AP1AP=B, 即AB\begin{cases} \boldsymbol{A}, \boldsymbol{A}^{-1}, \boldsymbol{A}^{*} \\ \boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \text{, 即} \boldsymbol{A}\sim \boldsymbol{B} \end{cases}

例题

  1. A4×4,A2=E,tr(A)=0\boldsymbol{A}_{4\times 4}, \boldsymbol{A}^{2} = \boldsymbol{E}, \text{tr}(\boldsymbol{A}) = 0,求 A\boldsymbol{A} 的特征值 A2=EA2E=0AX=λXX0(A2E)X=(λ21)X=0λ21=0λ=±1tr(A)=0λ1=λ2=1,λ3=λ4=1 \begin{array}{ll} \because & \boldsymbol{A}^{2} = \boldsymbol{E} \\ \therefore & \boldsymbol{A}^{2} - \boldsymbol{E} = \boldsymbol{0} \\ & \text{令} \boldsymbol{AX} = \lambda \boldsymbol{X} \quad \boldsymbol{X} \ne \boldsymbol{0} \\ \therefore & (\boldsymbol{A}^{2} - \boldsymbol{E}) \boldsymbol{X} = (\lambda^{2} - 1) \boldsymbol{X} = \boldsymbol{0} \\ \therefore & \lambda^{2} - 1 = 0\Rightarrow \lambda = \pm 1 \\ \because & \text{tr}(\boldsymbol{A}) = 0 \\ \therefore & \lambda_{1} = \lambda_{2} = -1, \lambda_{3} = \lambda_{4} = 1 \\ \end{array}
  2. α=(a1a2a3a4),β=(b1b2b3b4),(α,β)=3,A=αβ\boldsymbol{\alpha}= \left( \begin{smallmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ \end{smallmatrix} \right), \boldsymbol{\beta} = \left( \begin{smallmatrix} b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ \end{smallmatrix} \right), (\boldsymbol{\alpha},\boldsymbol{\beta}) = 3, \boldsymbol{A} = \boldsymbol{\alpha\beta}^{\intercal},求特征值 A2=αβαβ(α,β)=βα=3A2=3AA23A=0AX=λXX0λ23λ=0λ1=3,λ2=0tr(A)=αβ=3λ3=λ4=λ2=0 \begin{array}{ll} \because & \boldsymbol{A}^{2} = \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\alpha\beta}^{\intercal} \\ \because & (\boldsymbol{\alpha},\boldsymbol{\beta}) = \boldsymbol{\beta}^{\intercal}\boldsymbol{\alpha} = 3 \\ \therefore & \boldsymbol{A}^{2} = 3 \boldsymbol{A} \Rightarrow \boldsymbol{A}^{2} - 3 \boldsymbol{A} = \boldsymbol{0} \\ & \text{令} \boldsymbol{AX} = \lambda \boldsymbol{X} \quad \boldsymbol{X} \ne \boldsymbol{0} \\ \therefore & \lambda^{2} - 3\lambda = 0 \Rightarrow \lambda_{1} = 3,\lambda_{2} = 0 \\ \because & \text{tr}(\boldsymbol{A}) = \boldsymbol{\alpha}^{\intercal}\boldsymbol{\beta} = 3 \\ \therefore & \lambda_{3} = \lambda_{4} = \lambda_{2} = 0 \\ \end{array}
  3. A3×3,A(111001)=(101000)\boldsymbol{A}_{3\times 3}, \boldsymbol{A} \left( \begin{smallmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) = \left( \begin{smallmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 0 \end{smallmatrix} \right)A\boldsymbol{A} 每行之和为 22,求 A\boldsymbol{A} A(111001)=(101000)λ1=1,λ2=0A每行之和为2A(111)=(222)λ3=2P=(111101011)P1AP=(102)A=P(102)P1A=(102102002)(101112111)=(121323222) \begin{array}{ll} \because & \boldsymbol{A} \left( \begin{smallmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) = \left( \begin{smallmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 0 \end{smallmatrix} \right) \\ \therefore & \lambda_{1} = -1, \lambda_{2} = 0 \\ \because & \boldsymbol{A} \text{每行之和为}2 \\ \therefore & \boldsymbol{A} \left( \begin{smallmatrix} 1 \\ 1 \\ 1 \end{smallmatrix} \right) = \left( \begin{smallmatrix} 2 \\ 2 \\ 2 \end{smallmatrix} \right)\\ \therefore & \lambda_{3} = 2 \\ \therefore & \text{令} \boldsymbol{P} = \left( \begin{smallmatrix} -1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{smallmatrix} \right)\\ \because & \boldsymbol{P}^{-1}\boldsymbol{AP} = \left( \begin{smallmatrix} -1 \\ & 0 \\ & & 2 \end{smallmatrix} \right)\\ \therefore & \boldsymbol{A} = \boldsymbol{P} \left( \begin{smallmatrix} -1 \\ & 0 \\ & & 2 \end{smallmatrix} \right)\boldsymbol{P}^{-1}\\ \therefore & \boldsymbol{A} = \left( \begin{smallmatrix} 1 & 0 & 2 \\ -1 & 0 & 2 \\ 0 & 0 & 2 \\ \end{smallmatrix} \right)\left( \begin{smallmatrix} -1 & 0 & 1 \\ -1 & -1 & 2 \\ 1 & 1 & -1 \end{smallmatrix} \right) = \left( \begin{smallmatrix} 1 & 2 & -1 \\ 3 & 2 & -3 \\ 2 & 2 & -2 \end{smallmatrix} \right)\\ \end{array}
  4. A3×3\boldsymbol{A}_{3\times 3}α1,α2,α3\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3} 线性无关,Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2\boldsymbol{A\alpha}_{1} = \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3},\boldsymbol{A\alpha}_{2} = \boldsymbol{\alpha}_{1} +\boldsymbol{\alpha}_{3}, \boldsymbol{A\alpha}_{3} = \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2},求 A\boldsymbol{A} 的特征值 P=(α1α2α3)由题意得AP=P(011101110)A(011101110)det(λEA)=λ111λ111λ=(λ2)1110λ+1000λ+1=(λ2)(λ+1)2λ1=2,λ2=λ3=1 \begin{array}{ll} & \text{令} \boldsymbol{P} = \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \boldsymbol{\alpha}_{3} \end{matrix} \right) \\ & \text{由题意得} \boldsymbol{AP} = \boldsymbol{P} \left( \begin{smallmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{smallmatrix} \right) \\ \therefore & \boldsymbol{A} \sim \left( \begin{smallmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{smallmatrix} \right) \\ \therefore & \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = \left\vert \begin{smallmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \\ \end{smallmatrix} \right\vert = (\lambda-2) \left\vert \begin{smallmatrix} 1 & 1 & 1 \\ 0 & \lambda +1 & 0 \\ 0 & 0 & \lambda +1 \\ \end{smallmatrix} \right\vert = (\lambda-2)(\lambda+1)^{2}\\ \therefore & \lambda_{1} = 2, \lambda_{2} = \lambda_{3} = -1 \\ \end{array}

型三 矩阵对角化的判断

方法

  1. A=A\boldsymbol{A}^{\intercal} = \boldsymbol{A},则 A\boldsymbol{A} 可对角化
  2. AA\boldsymbol{A}^{\intercal}\ne \boldsymbol{A}:
    • Case1 ABA,B\boldsymbol{A}\sim \boldsymbol{B} \Rightarrow \boldsymbol{A}, \boldsymbol{B} 可对角化特性相同
    • Case2λ1,,λn\lambda_{1},\cdots, \lambda_{n}
      1. 单值 \Rightarrow A\boldsymbol{A} 可对角化
      2. 每个特征值重数和无关特征向量个数一致 \Rightarrow A\boldsymbol{A} 可对角化
      3. 存在 nn 个线性无关特征向量 \Rightarrow A\boldsymbol{A} 可对角化

例题

  1. A=(abcd)\boldsymbol{A} = \left( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right),且 adbc<0ad - bc < 0,证: A\boldsymbol{A} 可相似对角化 det(λEA)=λabcλd=λ2(a+d)λ+adbcadbc<0[(a+d)]24(adbc)>0A必有两个不同特征值A可相似对角化 \begin{array}{ll} & \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = \left\vert \begin{smallmatrix} \lambda - a & -b \\ -c & \lambda - d \end{smallmatrix} \right\vert = \lambda^{2} - (a+d)\lambda + ad - bc \\ \because & ad - bc < 0 \\ \therefore & [-(a+d)]^{2} - 4 (ad-bc) > 0\\ \therefore & \boldsymbol{A} \text{必有两个不同特征值} \\ \therefore & \boldsymbol{A}\text{可相似对角化} \\ \end{array}
  2. α=(a1a2a3),β=(b1b2b3)\boldsymbol{\alpha} = \left( \begin{smallmatrix} a_{1} \\ a_{2} \\ a_{3} \end{smallmatrix} \right), \boldsymbol{\beta} = \left( \begin{smallmatrix} b_{1} \\ b_{2} \\ b_{3} \end{smallmatrix} \right) 单位且正交,A=αβ+βα\boldsymbol{A} = \boldsymbol{\alpha\beta}^{\intercal}+ \boldsymbol{\beta\alpha}^{\intercal}
    1. 证明: α+β,αβ\boldsymbol{\alpha} + \boldsymbol{\beta}, \boldsymbol{\alpha}- \boldsymbol{\beta}A\boldsymbol{A} 特征向量
    2. 证明: A\boldsymbol{A} 可对角化 A(α+β)=αβα+βαα+αββ+βαβA(αβ)=αβα+βαααβββαβα,β单位且正交A(α+β)=1×(α+β)A(αβ)=1×(αβ)α,βA的特征向量A=αβ+βαtr(A)=αβ+βα=0λ3=0λ1λ2A可对角化 \begin{array}{ll} \because & \boldsymbol{A}(\boldsymbol{\alpha} + \boldsymbol{\beta}) = \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\alpha}+ \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\alpha} + \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\beta}+ \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\beta} \\ & \boldsymbol{A}(\boldsymbol{\alpha} - \boldsymbol{\beta}) = \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\alpha}+ \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\alpha} - \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\beta}- \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\beta} \\ \because & \boldsymbol{\alpha}, \boldsymbol{\beta}\text{单位且正交} \\ \therefore & \boldsymbol{A}(\boldsymbol{\alpha}+ \boldsymbol{\beta}) = 1\times(\boldsymbol{\alpha} + \boldsymbol{\beta})\\ & \boldsymbol{A}(\boldsymbol{\alpha}- \boldsymbol{\beta}) = -1\times(\boldsymbol{\alpha} - \boldsymbol{\beta})\\ \therefore & \boldsymbol{\alpha},\boldsymbol{\beta}\text{为}\boldsymbol{A}\text{的特征向量} \\\\ \because & \boldsymbol{A} = \boldsymbol{\alpha\beta}^{\intercal} + \boldsymbol{\beta\alpha}^{\intercal} \\ \therefore & \text{tr}(\boldsymbol{A}) = \boldsymbol{\alpha}^{\intercal}\boldsymbol{\beta} + \boldsymbol{\beta}^{\intercal}\boldsymbol{\alpha} = 0\\ \therefore & \lambda_{3} = 0\ne \lambda_{1} \ne \lambda_{2} \\ \therefore & \boldsymbol{A}\text{可对角化} \\ \end{array}
  3. A=(120100001)\boldsymbol{A} = \left( \begin{smallmatrix} -1 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right)A\boldsymbol{A} 可否对角化 det(λEA)=λ+1201λ000λ1=(λ1)λ+121λ=(λ1)2(λ+2)=0λ1=λ2=1,λ3=2λ=1对应的线性无关特征向量α1=(110),α2=(001)A可对角化 \begin{array}{ll} &\det(\lambda\boldsymbol{E} - \boldsymbol{A}) = \left\vert \begin{smallmatrix} \lambda + 1 & -2 & 0 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda -1 \end{smallmatrix} \right\vert = (\lambda - 1) \left\vert \begin{smallmatrix} \lambda+1 & -2 \\ -1 & \lambda \end{smallmatrix} \right\vert = (\lambda-1)^{2}(\lambda+2) = 0 \\ \therefore & \lambda_{1} = \lambda_{2} = 1,\lambda_{3} = -2 \\ & \lambda = 1 \text{对应的线性无关特征向量} \boldsymbol{\alpha}_{1} = \left( \begin{smallmatrix} 1 \\ 1 \\ 0 \end{smallmatrix} \right),\boldsymbol{\alpha}_{2} = \left( \begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix} \right) \\ \therefore & \boldsymbol{A}\text{可对角化} \\ \end{array}
  4. A3×3,α1,α2,α3\boldsymbol{A}_{3\times 3}, \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} 线性无关,Aα1=α1,Aα2=2α1+α2,Aα3=α1+α3\boldsymbol{A\alpha}_{1} = \boldsymbol{\alpha}_{1}, \boldsymbol{A\alpha}_{2} = 2\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, \boldsymbol{A\alpha}_{3} = -\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{3}A\boldsymbol{A} 可否对角化? P=(α1α2α3)由题意得AP=P(121010001)A(121010001)Bdet(λEA)=det(λEB)=λ1210λ1000λ1=(λ1)3=0λ=1r(EB)=1(EB)X=0仅有两个线性无关解A不可对角化 \begin{array}{ll} & \text{令} \boldsymbol{P} = \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \boldsymbol{\alpha}_{3} \end{matrix} \right) \\ & \text{由题意得} \boldsymbol{AP} = \boldsymbol{P} \left( \begin{smallmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right) \\ \therefore & \boldsymbol{A} \sim \left( \begin{smallmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right)\triangleq \boldsymbol{B}\\ \therefore & \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \left\vert \begin{smallmatrix} \lambda-1 & -2 & 1 \\ 0 & \lambda-1 & 0 \\ 0 & 0 & \lambda-1 \end{smallmatrix} \right\vert = (\lambda-1)^{3} = 0 \\ \therefore & \lambda =1 \\ \because & r(\boldsymbol{E} - \boldsymbol{B}) = 1 \\ \therefore & (\boldsymbol{E} - \boldsymbol{B})\boldsymbol{X} = \boldsymbol{0}\text{仅有两个线性无关解} \\ \therefore & \boldsymbol{A}\text{不可对角化} \\ \end{array}
  5. A=(22082a006)\boldsymbol{A} = \left( \begin{smallmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{smallmatrix} \right) 相似于对角阵,求常数 aa,并求可逆矩阵 P\boldsymbol{P} 使得 P1AP\boldsymbol{P}^{-1}\boldsymbol{AP} 为对角矩阵 det(λEA)=λ2208λ2a00λ6=(λ6)λ228λ2=(λ6)2(λ+2)=0λ1=λ2=6,λ3=2A可对角化r(6EA)=16EA=(42084a000)a=06EA=(1120000000)λ=6对应的线性无关特征向量α1=(1210),α2=(001)2E+A=(1120001000)λ=2对应的线性无关特征向量α3=(1210)P=(α1α2α3)=(12012101010)P1AP=(662) \begin{array}{ll} & \det(\lambda\boldsymbol{E} - \boldsymbol{A}) = \left\vert \begin{smallmatrix} \lambda -2 & -2 & 0 \\ -8 & \lambda -2 & -a \\ 0 & 0 & \lambda-6 \end{smallmatrix} \right\vert = (\lambda-6) \left\vert \begin{smallmatrix} \lambda - 2 & -2 \\ -8 & \lambda-2 \end{smallmatrix} \right\vert = (\lambda-6)^{2}(\lambda+2) = 0 \\ \therefore & \lambda_{1} =\lambda_{2} = 6, \lambda_{3} = -2\\ \because & \boldsymbol{A}\text{可对角化} \\ \therefore & r(6 \boldsymbol{E} - \boldsymbol{A}) = 1 \\ & 6 \boldsymbol{E} - \boldsymbol{A} = \left( \begin{smallmatrix} 4 & -2 & 0 \\ -8 & 4 & -a \\ 0 & 0 & 0 \end{smallmatrix} \right) \\ \therefore & a = 0 \\\\ & 6 \boldsymbol{E} - \boldsymbol{A} = \left( \begin{smallmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{smallmatrix} \right)\\ \therefore & \lambda = 6 \text{对应的线性无关特征向量} \boldsymbol{\alpha}_{1} = \left( \begin{smallmatrix} \frac{1}{2} \\ 1 \\0 \end{smallmatrix} \right), \boldsymbol{\alpha}_{2} = \left( \begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix} \right)\\ & 2 \boldsymbol{E} + \boldsymbol{A} = \left( \begin{smallmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{smallmatrix} \right) \\ \therefore & \lambda = -2 \text{对应的线性无关特征向量} \boldsymbol{\alpha}_{3} = \left( \begin{smallmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{smallmatrix} \right)\\ & \text{令} \boldsymbol{P} = \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \boldsymbol{\alpha}_{3} \end{matrix} \right) = \left( \begin{smallmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{smallmatrix} \right) \\ \therefore & \boldsymbol{P}^{-1}\boldsymbol{AP} = \left( \begin{smallmatrix} 6 \\ & 6 \\ &&-2 \end{smallmatrix} \right)\\ \end{array}
  6. A=(001x1y100)\boldsymbol{A} = \left( \begin{smallmatrix} 0 & 0 & 1\\ x & 1 & y \\ 1 & 0 & 0 \end{smallmatrix} \right) 有三个线性无关特征向量,求 x,yx,y 所满足的条件 det(λEA)=λ01xλ1y10λ=λ2(λ1)(λ1)=(λ1)2(λ+1)=0λ1=λ2=1,λ3=1A有三个线性无关特征向量r(EA)=1r(101x0y101)=1x=y \begin{array}{ll} & \det(\lambda\boldsymbol{E} - \boldsymbol{A}) = \left\vert \begin{smallmatrix} \lambda & 0 & -1 \\ -x & \lambda - 1 & -y \\ -1 & 0 & \lambda \end{smallmatrix} \right\vert = \lambda^{2}(\lambda -1) - (\lambda - 1) = (\lambda -1)^{2}(\lambda +1) = 0 \\ \therefore & \lambda_{1} = \lambda_{2} = 1,\lambda_{3} = -1 \\ \because & \boldsymbol{A} \text{有三个线性无关特征向量} \\ & r(\boldsymbol{E} - \boldsymbol{A}) = 1 \\ \therefore & r \left( \begin{smallmatrix} 1 & 0 & -1 \\ -x & 0 & -y \\ -1 & 0 & 1 \end{smallmatrix} \right) = 1\\ \therefore & x = -y \\ \end{array}

results matching ""

    No results matching ""