Appendix_常见题型
型一 性质
A 3 × 3 , A 2 − A − 2 E = 0 , det ( A ) = 2 \boldsymbol{A}_{3\times 3}, \boldsymbol{A}^{2}- \boldsymbol{A} - 2 \boldsymbol{E} = \boldsymbol{0}, \det(\boldsymbol{A}) = 2 A 3 × 3 , A 2 − A − 2 E = 0 , det ( A ) = 2 ,求 A 11 + A 22 + A 33 A_{11} + A_{22} + A_{33} A 11 + A 22 + A 33
令 A X = λ X X ≠ 0 ∴ ( A 2 − A − 2 E ) X = ( λ 2 − λ − 2 ) X = 0 ∴ λ 2 − λ − 2 = 0 ⇒ λ 1 = 2 , λ 2 = − 1 ∵ det ( A ) = λ 1 λ 2 λ 3 ∴ λ 3 = λ 2 = − 1 ∴ A ∗ 的特征值为 1 , − 2 , − 2 ∴ tr ( A ∗ ) = A 11 + A 22 + A 33 = − 3
\begin{array}{ll}
& \text{令} \boldsymbol{AX} = \lambda \boldsymbol{X}\quad \boldsymbol{X} \ne \boldsymbol{0} \\
\therefore & (\boldsymbol{A}^{2} - \boldsymbol{A} - 2 \boldsymbol{E})\boldsymbol{X} = (\lambda^{2} - \lambda - 2)\boldsymbol{X} = \boldsymbol{0} \\
\therefore & \lambda^{2} - \lambda - 2 = 0 \Rightarrow \lambda_{1} = 2, \lambda_{2} = -1 \\
\because & \det(\boldsymbol{A}) = \lambda_{1}\lambda_{2}\lambda_{3} \\
\therefore & \lambda_{3} = \lambda_{2} = -1 \\
\therefore & \boldsymbol{A}^{*}\text{的特征值为} 1, -2 ,-2 \\
\therefore & \text{tr}(\boldsymbol{A}^{*}) = A_{11} + A_{22} + A_{33} = -3
\end{array}
∴ ∴ ∵ ∴ ∴ ∴ 令 AX = λ X X = 0 ( A 2 − A − 2 E ) X = ( λ 2 − λ − 2 ) X = 0 λ 2 − λ − 2 = 0 ⇒ λ 1 = 2 , λ 2 = − 1 det ( A ) = λ 1 λ 2 λ 3 λ 3 = λ 2 = − 1 A ∗ 的特征值为 1 , − 2 , − 2 tr ( A ∗ ) = A 11 + A 22 + A 33 = − 3
设 α = ( 1 1 2 ) \boldsymbol{\alpha} = \left( \begin{smallmatrix} 1 \\ 1 \\ 2 \end{smallmatrix} \right) α = ( 1 1 2 ) 为矩阵 A = ( 1 − 3 3 6 x − 6 y − 9 13 ) \boldsymbol{A} = \left( \begin{smallmatrix} 1 & -3 & 3 \\ 6 & x & -6 \\ y & -9 &13 \end{smallmatrix} \right) A = ( 1 6 y − 3 x − 9 3 − 6 13 ) 的逆矩阵 A − 1 \boldsymbol{A}^{-1} A − 1 的特征向量,求 x , y x,y x , y 及 A − 1 \boldsymbol{A}^{-1} A − 1 的特征值 μ \mu μ
由题意得 α 为 A 的特征向量 ∴ A α = λ α A α = ( 4 x − 6 y + 17 ) = λ α ∴ 4 1 = x − 6 1 = y + 17 2 ∴ x = 10 , y = − 9 , λ = 4 ∴ μ = 1 λ = 1 4
\begin{array}{ll}
& \text{由题意得}\boldsymbol{\alpha}\text{为}\boldsymbol{A}\text{的特征向量} \\
\therefore & \boldsymbol{A\alpha} = \lambda \boldsymbol{\alpha}\\
& \boldsymbol{A\alpha}=
\left(
\begin{smallmatrix}
4 \\
x-6 \\
y+17
\end{smallmatrix}
\right) = \lambda \alpha \\
\therefore & \frac{4}{1} = \frac{x-6}{1} = \frac{y+17}{2} \\
\therefore & x = 10, y = -9,\lambda = 4\\
\therefore & \mu = \frac{1}{\lambda} = \frac{1}{4}
\end{array}
∴ ∴ ∴ ∴ 由题意得 α 为 A 的特征向量 Aα = λ α Aα = ( 4 x − 6 y + 17 ) = λ α 1 4 = 1 x − 6 = 2 y + 17 x = 10 , y = − 9 , λ = 4 μ = λ 1 = 4 1
型二 求 λ \lambda λ
方法
公式法 det ( λ E − A ) = 0 \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = 0 det ( λ E − A ) = 0
定义法 A X = λ X X ≠ 0 \boldsymbol{AX} = \lambda X \quad \boldsymbol{X} \ne \boldsymbol{0} AX = λ X X = 0
特征 f ( A ) , A B = C f(\boldsymbol{A}), \boldsymbol{AB} = \boldsymbol{C} f ( A ) , AB = C
关联法 { A , A − 1 , A ∗ P − 1 A P = B , 即 A ∼ B \begin{cases}
\boldsymbol{A}, \boldsymbol{A}^{-1}, \boldsymbol{A}^{*} \\
\boldsymbol{P}^{-1}\boldsymbol{AP} = \boldsymbol{B} \text{, 即} \boldsymbol{A}\sim \boldsymbol{B}
\end{cases} { A , A − 1 , A ∗ P − 1 AP = B , 即 A ∼ B
例题
A 4 × 4 , A 2 = E , tr ( A ) = 0 \boldsymbol{A}_{4\times 4}, \boldsymbol{A}^{2} = \boldsymbol{E}, \text{tr}(\boldsymbol{A}) = 0 A 4 × 4 , A 2 = E , tr ( A ) = 0 ,求 A \boldsymbol{A} A 的特征值
∵ A 2 = E ∴ A 2 − E = 0 令 A X = λ X X ≠ 0 ∴ ( A 2 − E ) X = ( λ 2 − 1 ) X = 0 ∴ λ 2 − 1 = 0 ⇒ λ = ± 1 ∵ tr ( A ) = 0 ∴ λ 1 = λ 2 = − 1 , λ 3 = λ 4 = 1
\begin{array}{ll}
\because & \boldsymbol{A}^{2} = \boldsymbol{E} \\
\therefore & \boldsymbol{A}^{2} - \boldsymbol{E} = \boldsymbol{0} \\
& \text{令} \boldsymbol{AX} = \lambda \boldsymbol{X} \quad \boldsymbol{X} \ne \boldsymbol{0} \\
\therefore & (\boldsymbol{A}^{2} - \boldsymbol{E}) \boldsymbol{X} = (\lambda^{2} - 1) \boldsymbol{X} = \boldsymbol{0} \\
\therefore & \lambda^{2} - 1 = 0\Rightarrow \lambda = \pm 1 \\
\because & \text{tr}(\boldsymbol{A}) = 0 \\
\therefore & \lambda_{1} = \lambda_{2} = -1, \lambda_{3} = \lambda_{4} = 1 \\
\end{array}
∵ ∴ ∴ ∴ ∵ ∴ A 2 = E A 2 − E = 0 令 AX = λ X X = 0 ( A 2 − E ) X = ( λ 2 − 1 ) X = 0 λ 2 − 1 = 0 ⇒ λ = ± 1 tr ( A ) = 0 λ 1 = λ 2 = − 1 , λ 3 = λ 4 = 1
α = ( a 1 a 2 a 3 a 4 ) , β = ( b 1 b 2 b 3 b 4 ) , ( α , β ) = 3 , A = α β ⊺ \boldsymbol{\alpha}= \left( \begin{smallmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ \end{smallmatrix} \right), \boldsymbol{\beta} = \left( \begin{smallmatrix} b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ \end{smallmatrix} \right), (\boldsymbol{\alpha},\boldsymbol{\beta}) = 3, \boldsymbol{A} = \boldsymbol{\alpha\beta}^{\intercal} α = ( a 1 a 2 a 3 a 4 ) , β = ( b 1 b 2 b 3 b 4 ) , ( α , β ) = 3 , A = αβ ⊺ ,求特征值
∵ A 2 = α β ⊺ α β ⊺ ∵ ( α , β ) = β ⊺ α = 3 ∴ A 2 = 3 A ⇒ A 2 − 3 A = 0 令 A X = λ X X ≠ 0 ∴ λ 2 − 3 λ = 0 ⇒ λ 1 = 3 , λ 2 = 0 ∵ tr ( A ) = α ⊺ β = 3 ∴ λ 3 = λ 4 = λ 2 = 0
\begin{array}{ll}
\because & \boldsymbol{A}^{2} = \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\alpha\beta}^{\intercal} \\
\because & (\boldsymbol{\alpha},\boldsymbol{\beta}) = \boldsymbol{\beta}^{\intercal}\boldsymbol{\alpha} = 3 \\
\therefore & \boldsymbol{A}^{2} = 3 \boldsymbol{A} \Rightarrow \boldsymbol{A}^{2} - 3 \boldsymbol{A} = \boldsymbol{0} \\
& \text{令} \boldsymbol{AX} = \lambda \boldsymbol{X} \quad \boldsymbol{X} \ne \boldsymbol{0} \\
\therefore & \lambda^{2} - 3\lambda = 0 \Rightarrow \lambda_{1} = 3,\lambda_{2} = 0 \\
\because & \text{tr}(\boldsymbol{A}) = \boldsymbol{\alpha}^{\intercal}\boldsymbol{\beta} = 3 \\
\therefore & \lambda_{3} = \lambda_{4} = \lambda_{2} = 0 \\
\end{array}
∵ ∵ ∴ ∴ ∵ ∴ A 2 = αβ ⊺ αβ ⊺ ( α , β ) = β ⊺ α = 3 A 2 = 3 A ⇒ A 2 − 3 A = 0 令 AX = λ X X = 0 λ 2 − 3 λ = 0 ⇒ λ 1 = 3 , λ 2 = 0 tr ( A ) = α ⊺ β = 3 λ 3 = λ 4 = λ 2 = 0
A 3 × 3 , A ( − 1 1 1 0 0 1 ) = ( 1 0 − 1 0 0 0 ) \boldsymbol{A}_{3\times 3}, \boldsymbol{A} \left( \begin{smallmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) = \left( \begin{smallmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 0 \end{smallmatrix} \right) A 3 × 3 , A ( − 1 1 0 1 0 1 ) = ( 1 − 1 0 0 0 0 ) ,A \boldsymbol{A} A 每行之和为 2 2 2 ,求 A \boldsymbol{A} A
∵ A ( − 1 1 1 0 0 1 ) = ( 1 0 − 1 0 0 0 ) ∴ λ 1 = − 1 , λ 2 = 0 ∵ A 每行之和为 2 ∴ A ( 1 1 1 ) = ( 2 2 2 ) ∴ λ 3 = 2 ∴ 令 P = ( − 1 1 1 1 0 1 0 1 1 ) ∵ P − 1 A P = ( − 1 0 2 ) ∴ A = P ( − 1 0 2 ) P − 1 ∴ A = ( 1 0 2 − 1 0 2 0 0 2 ) ( − 1 0 1 − 1 − 1 2 1 1 − 1 ) = ( 1 2 − 1 3 2 − 3 2 2 − 2 )
\begin{array}{ll}
\because & \boldsymbol{A} \left( \begin{smallmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) = \left( \begin{smallmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 0 \end{smallmatrix} \right) \\
\therefore & \lambda_{1} = -1, \lambda_{2} = 0 \\
\because & \boldsymbol{A} \text{每行之和为}2 \\
\therefore & \boldsymbol{A}
\left(
\begin{smallmatrix}
1 \\ 1 \\ 1
\end{smallmatrix}
\right) = \left(
\begin{smallmatrix}
2 \\ 2 \\ 2
\end{smallmatrix}
\right)\\
\therefore & \lambda_{3} = 2 \\
\therefore & \text{令} \boldsymbol{P} =
\left(
\begin{smallmatrix}
-1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{smallmatrix}
\right)\\
\because & \boldsymbol{P}^{-1}\boldsymbol{AP} =
\left(
\begin{smallmatrix}
-1 \\
& 0 \\
& & 2
\end{smallmatrix}
\right)\\
\therefore & \boldsymbol{A} = \boldsymbol{P}
\left(
\begin{smallmatrix}
-1 \\
& 0 \\
& & 2
\end{smallmatrix}
\right)\boldsymbol{P}^{-1}\\
\therefore & \boldsymbol{A} =
\left(
\begin{smallmatrix}
1 & 0 & 2 \\
-1 & 0 & 2 \\
0 & 0 & 2 \\
\end{smallmatrix}
\right)\left(
\begin{smallmatrix}
-1 & 0 & 1 \\
-1 & -1 & 2 \\
1 & 1 & -1
\end{smallmatrix}
\right) =
\left(
\begin{smallmatrix}
1 & 2 & -1 \\
3 & 2 & -3 \\
2 & 2 & -2
\end{smallmatrix}
\right)\\
\end{array}
∵ ∴ ∵ ∴ ∴ ∴ ∵ ∴ ∴ A ( − 1 1 0 1 0 1 ) = ( 1 − 1 0 0 0 0 ) λ 1 = − 1 , λ 2 = 0 A 每行之和为 2 A ( 1 1 1 ) = ( 2 2 2 ) λ 3 = 2 令 P = ( − 1 1 0 1 0 1 1 1 1 ) P − 1 AP = ( − 1 0 2 ) A = P ( − 1 0 2 ) P − 1 A = ( 1 − 1 0 0 0 0 2 2 2 ) ( − 1 − 1 1 0 − 1 1 1 2 − 1 ) = ( 1 3 2 2 2 2 − 1 − 3 − 2 )
A 3 × 3 \boldsymbol{A}_{3\times 3} A 3 × 3 ,α 1 , α 2 , α 3 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3} α 1 , α 2 , α 3 线性无关,A α 1 = α 2 + α 3 , A α 2 = α 1 + α 3 , A α 3 = α 1 + α 2 \boldsymbol{A\alpha}_{1} = \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3},\boldsymbol{A\alpha}_{2} = \boldsymbol{\alpha}_{1} +\boldsymbol{\alpha}_{3}, \boldsymbol{A\alpha}_{3} = \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2} Aα 1 = α 2 + α 3 , Aα 2 = α 1 + α 3 , Aα 3 = α 1 + α 2 ,求 A \boldsymbol{A} A 的特征值
令 P = ( α 1 α 2 α 3 ) 由题意得 A P = P ( 0 1 1 1 0 1 1 1 0 ) ∴ A ∼ ( 0 1 1 1 0 1 1 1 0 ) ∴ det ( λ E − A ) = ∣ λ − 1 − 1 − 1 λ − 1 − 1 − 1 λ ∣ = ( λ − 2 ) ∣ 1 1 1 0 λ + 1 0 0 0 λ + 1 ∣ = ( λ − 2 ) ( λ + 1 ) 2 ∴ λ 1 = 2 , λ 2 = λ 3 = − 1
\begin{array}{ll}
& \text{令} \boldsymbol{P} =
\left(
\begin{matrix}
\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \boldsymbol{\alpha}_{3}
\end{matrix}
\right) \\
& \text{由题意得} \boldsymbol{AP} = \boldsymbol{P}
\left(
\begin{smallmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{smallmatrix}
\right) \\
\therefore & \boldsymbol{A} \sim
\left(
\begin{smallmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{smallmatrix}
\right) \\
\therefore & \det(\lambda \boldsymbol{E} - \boldsymbol{A}) =
\left\vert
\begin{smallmatrix}
\lambda & -1 & -1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda \\
\end{smallmatrix}
\right\vert = (\lambda-2)
\left\vert
\begin{smallmatrix}
1 & 1 & 1 \\
0 & \lambda +1 & 0 \\
0 & 0 & \lambda +1 \\
\end{smallmatrix}
\right\vert = (\lambda-2)(\lambda+1)^{2}\\
\therefore & \lambda_{1} = 2, \lambda_{2} = \lambda_{3} = -1 \\
\end{array}
∴ ∴ ∴ 令 P = ( α 1 α 2 α 3 ) 由题意得 AP = P ( 0 1 1 1 0 1 1 1 0 ) A ∼ ( 0 1 1 1 0 1 1 1 0 ) det ( λ E − A ) = ∣ ∣ λ − 1 − 1 − 1 λ − 1 − 1 − 1 λ ∣ ∣ = ( λ − 2 ) ∣ ∣ 1 0 0 1 λ + 1 0 1 0 λ + 1 ∣ ∣ = ( λ − 2 ) ( λ + 1 ) 2 λ 1 = 2 , λ 2 = λ 3 = − 1
型三 矩阵对角化的判断
方法
若 A ⊺ = A \boldsymbol{A}^{\intercal} = \boldsymbol{A} A ⊺ = A ,则 A \boldsymbol{A} A 可对角化
若 A ⊺ ≠ A \boldsymbol{A}^{\intercal}\ne \boldsymbol{A} A ⊺ = A :
Case1 A ∼ B ⇒ A , B \boldsymbol{A}\sim \boldsymbol{B} \Rightarrow \boldsymbol{A}, \boldsymbol{B} A ∼ B ⇒ A , B 可对角化特性相同
Case2 求 λ 1 , ⋯ , λ n \lambda_{1},\cdots, \lambda_{n} λ 1 , ⋯ , λ n
单值 ⇒ \Rightarrow ⇒ A \boldsymbol{A} A 可对角化
每个特征值重数和无关特征向量个数一致 ⇒ \Rightarrow ⇒ A \boldsymbol{A} A 可对角化
存在 n n n 个线性无关特征向量 ⇒ \Rightarrow ⇒ A \boldsymbol{A} A 可对角化
例题
A = ( a b c d ) \boldsymbol{A} = \left( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) A = ( a c b d ) ,且 a d − b c < 0 ad - bc < 0 a d − b c < 0 ,证: A \boldsymbol{A} A 可相似对角化
det ( λ E − A ) = ∣ λ − a − b − c λ − d ∣ = λ 2 − ( a + d ) λ + a d − b c ∵ a d − b c < 0 ∴ [ − ( a + d ) ] 2 − 4 ( a d − b c ) > 0 ∴ A 必有两个不同特征值 ∴ A 可相似对角化
\begin{array}{ll}
& \det(\lambda \boldsymbol{E} - \boldsymbol{A}) =
\left\vert
\begin{smallmatrix}
\lambda - a & -b \\
-c & \lambda - d
\end{smallmatrix}
\right\vert = \lambda^{2} - (a+d)\lambda + ad - bc \\
\because & ad - bc < 0 \\
\therefore & [-(a+d)]^{2} - 4 (ad-bc) > 0\\
\therefore & \boldsymbol{A} \text{必有两个不同特征值} \\
\therefore & \boldsymbol{A}\text{可相似对角化} \\
\end{array}
∵ ∴ ∴ ∴ det ( λ E − A ) = ∣ ∣ λ − a − c − b λ − d ∣ ∣ = λ 2 − ( a + d ) λ + a d − b c a d − b c < 0 [ − ( a + d ) ] 2 − 4 ( a d − b c ) > 0 A 必有两个不同特征值 A 可相似对角化
α = ( a 1 a 2 a 3 ) , β = ( b 1 b 2 b 3 ) \boldsymbol{\alpha} = \left( \begin{smallmatrix} a_{1} \\ a_{2} \\ a_{3} \end{smallmatrix} \right), \boldsymbol{\beta} = \left( \begin{smallmatrix} b_{1} \\ b_{2} \\ b_{3} \end{smallmatrix} \right) α = ( a 1 a 2 a 3 ) , β = ( b 1 b 2 b 3 ) 单位且正交,A = α β ⊺ + β α ⊺ \boldsymbol{A} = \boldsymbol{\alpha\beta}^{\intercal}+ \boldsymbol{\beta\alpha}^{\intercal} A = αβ ⊺ + βα ⊺
证明: α + β , α − β \boldsymbol{\alpha} + \boldsymbol{\beta}, \boldsymbol{\alpha}- \boldsymbol{\beta} α + β , α − β 为 A \boldsymbol{A} A 特征向量
证明: A \boldsymbol{A} A 可对角化
∵ A ( α + β ) = α β ⊺ α + β α ⊺ α + α β ⊺ β + β α ⊺ β A ( α − β ) = α β ⊺ α + β α ⊺ α − α β ⊺ β − β α ⊺ β ∵ α , β 单位且正交 ∴ A ( α + β ) = 1 × ( α + β ) A ( α − β ) = − 1 × ( α − β ) ∴ α , β 为 A 的特征向量 ∵ A = α β ⊺ + β α ⊺ ∴ tr ( A ) = α ⊺ β + β ⊺ α = 0 ∴ λ 3 = 0 ≠ λ 1 ≠ λ 2 ∴ A 可对角化
\begin{array}{ll}
\because & \boldsymbol{A}(\boldsymbol{\alpha} + \boldsymbol{\beta}) = \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\alpha}+ \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\alpha} + \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\beta}+ \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\beta} \\
& \boldsymbol{A}(\boldsymbol{\alpha} - \boldsymbol{\beta}) = \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\alpha}+ \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\alpha} - \boldsymbol{\alpha\beta}^{\intercal}\boldsymbol{\beta}- \boldsymbol{\beta\alpha}^{\intercal}\boldsymbol{\beta} \\
\because & \boldsymbol{\alpha}, \boldsymbol{\beta}\text{单位且正交} \\
\therefore & \boldsymbol{A}(\boldsymbol{\alpha}+ \boldsymbol{\beta}) = 1\times(\boldsymbol{\alpha} + \boldsymbol{\beta})\\
& \boldsymbol{A}(\boldsymbol{\alpha}- \boldsymbol{\beta}) = -1\times(\boldsymbol{\alpha} - \boldsymbol{\beta})\\
\therefore & \boldsymbol{\alpha},\boldsymbol{\beta}\text{为}\boldsymbol{A}\text{的特征向量} \\\\
\because & \boldsymbol{A} = \boldsymbol{\alpha\beta}^{\intercal} + \boldsymbol{\beta\alpha}^{\intercal} \\
\therefore & \text{tr}(\boldsymbol{A}) = \boldsymbol{\alpha}^{\intercal}\boldsymbol{\beta} + \boldsymbol{\beta}^{\intercal}\boldsymbol{\alpha} = 0\\
\therefore & \lambda_{3} = 0\ne \lambda_{1} \ne \lambda_{2} \\
\therefore & \boldsymbol{A}\text{可对角化} \\
\end{array}
∵ ∵ ∴ ∴ ∵ ∴ ∴ ∴ A ( α + β ) = αβ ⊺ α + βα ⊺ α + αβ ⊺ β + βα ⊺ β A ( α − β ) = αβ ⊺ α + βα ⊺ α − αβ ⊺ β − βα ⊺ β α , β 单位且正交 A ( α + β ) = 1 × ( α + β ) A ( α − β ) = − 1 × ( α − β ) α , β 为 A 的特征向量 A = αβ ⊺ + βα ⊺ tr ( A ) = α ⊺ β + β ⊺ α = 0 λ 3 = 0 = λ 1 = λ 2 A 可对角化
A = ( − 1 2 0 1 0 0 0 0 1 ) \boldsymbol{A} = \left( \begin{smallmatrix} -1 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right) A = ( − 1 1 0 2 0 0 0 0 1 ) ,A \boldsymbol{A} A 可否对角化
det ( λ E − A ) = ∣ λ + 1 − 2 0 − 1 λ 0 0 0 λ − 1 ∣ = ( λ − 1 ) ∣ λ + 1 − 2 − 1 λ ∣ = ( λ − 1 ) 2 ( λ + 2 ) = 0 ∴ λ 1 = λ 2 = 1 , λ 3 = − 2 λ = 1 对应的线性无关特征向量 α 1 = ( 1 1 0 ) , α 2 = ( 0 0 1 ) ∴ A 可对角化
\begin{array}{ll}
&\det(\lambda\boldsymbol{E} - \boldsymbol{A}) =
\left\vert
\begin{smallmatrix}
\lambda + 1 & -2 & 0 \\
-1 & \lambda & 0 \\
0 & 0 & \lambda -1
\end{smallmatrix}
\right\vert = (\lambda - 1)
\left\vert
\begin{smallmatrix}
\lambda+1 & -2 \\
-1 & \lambda
\end{smallmatrix}
\right\vert = (\lambda-1)^{2}(\lambda+2) = 0 \\
\therefore & \lambda_{1} = \lambda_{2} = 1,\lambda_{3} = -2 \\
& \lambda = 1 \text{对应的线性无关特征向量} \boldsymbol{\alpha}_{1} =
\left(
\begin{smallmatrix}
1 \\
1 \\
0
\end{smallmatrix}
\right),\boldsymbol{\alpha}_{2} =
\left(
\begin{smallmatrix}
0 \\
0 \\
1
\end{smallmatrix}
\right) \\
\therefore & \boldsymbol{A}\text{可对角化} \\
\end{array}
∴ ∴ det ( λ E − A ) = ∣ ∣ λ + 1 − 1 0 − 2 λ 0 0 0 λ − 1 ∣ ∣ = ( λ − 1 ) ∣ ∣ λ + 1 − 1 − 2 λ ∣ ∣ = ( λ − 1 ) 2 ( λ + 2 ) = 0 λ 1 = λ 2 = 1 , λ 3 = − 2 λ = 1 对应的线性无关特征向量 α 1 = ( 1 1 0 ) , α 2 = ( 0 0 1 ) A 可对角化
A 3 × 3 , α 1 , α 2 , α 3 \boldsymbol{A}_{3\times 3}, \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} A 3 × 3 , α 1 , α 2 , α 3 线性无关,A α 1 = α 1 , A α 2 = 2 α 1 + α 2 , A α 3 = − α 1 + α 3 \boldsymbol{A\alpha}_{1} = \boldsymbol{\alpha}_{1}, \boldsymbol{A\alpha}_{2} = 2\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, \boldsymbol{A\alpha}_{3} = -\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{3} Aα 1 = α 1 , Aα 2 = 2 α 1 + α 2 , Aα 3 = − α 1 + α 3 ,A \boldsymbol{A} A 可否对角化?
令 P = ( α 1 α 2 α 3 ) 由题意得 A P = P ( 1 2 − 1 0 1 0 0 0 1 ) ∴ A ∼ ( 1 2 − 1 0 1 0 0 0 1 ) ≜ B ∴ det ( λ E − A ) = det ( λ E − B ) = ∣ λ − 1 − 2 1 0 λ − 1 0 0 0 λ − 1 ∣ = ( λ − 1 ) 3 = 0 ∴ λ = 1 ∵ r ( E − B ) = 1 ∴ ( E − B ) X = 0 仅有两个线性无关解 ∴ A 不可对角化
\begin{array}{ll}
& \text{令} \boldsymbol{P} =
\left(
\begin{matrix}
\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \boldsymbol{\alpha}_{3}
\end{matrix}
\right) \\
& \text{由题意得} \boldsymbol{AP} = \boldsymbol{P}
\left(
\begin{smallmatrix}
1 & 2 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{smallmatrix}
\right) \\
\therefore & \boldsymbol{A} \sim \left(
\begin{smallmatrix}
1 & 2 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{smallmatrix}
\right)\triangleq \boldsymbol{B}\\
\therefore & \det(\lambda \boldsymbol{E} - \boldsymbol{A}) = \det(\lambda \boldsymbol{E} - \boldsymbol{B}) = \left\vert
\begin{smallmatrix}
\lambda-1 & -2 & 1 \\
0 & \lambda-1 & 0 \\
0 & 0 & \lambda-1
\end{smallmatrix}
\right\vert = (\lambda-1)^{3} = 0 \\
\therefore & \lambda =1 \\
\because & r(\boldsymbol{E} - \boldsymbol{B}) = 1 \\
\therefore & (\boldsymbol{E} - \boldsymbol{B})\boldsymbol{X} = \boldsymbol{0}\text{仅有两个线性无关解} \\
\therefore & \boldsymbol{A}\text{不可对角化} \\
\end{array}
∴ ∴ ∴ ∵ ∴ ∴ 令 P = ( α 1 α 2 α 3 ) 由题意得 AP = P ( 1 0 0 2 1 0 − 1 0 1 ) A ∼ ( 1 0 0 2 1 0 − 1 0 1 ) ≜ B det ( λ E − A ) = det ( λ E − B ) = ∣ ∣ λ − 1 0 0 − 2 λ − 1 0 1 0 λ − 1 ∣ ∣ = ( λ − 1 ) 3 = 0 λ = 1 r ( E − B ) = 1 ( E − B ) X = 0 仅有两个线性无关解 A 不可对角化
设 A = ( 2 2 0 8 2 a 0 0 6 ) \boldsymbol{A} = \left( \begin{smallmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{smallmatrix} \right) A = ( 2 8 0 2 2 0 0 a 6 ) 相似于对角阵,求常数 a a a ,并求可逆矩阵 P \boldsymbol{P} P 使得 P − 1 A P \boldsymbol{P}^{-1}\boldsymbol{AP} P − 1 AP 为对角矩阵
det ( λ E − A ) = ∣ λ − 2 − 2 0 − 8 λ − 2 − a 0 0 λ − 6 ∣ = ( λ − 6 ) ∣ λ − 2 − 2 − 8 λ − 2 ∣ = ( λ − 6 ) 2 ( λ + 2 ) = 0 ∴ λ 1 = λ 2 = 6 , λ 3 = − 2 ∵ A 可对角化 ∴ r ( 6 E − A ) = 1 6 E − A = ( 4 − 2 0 − 8 4 − a 0 0 0 ) ∴ a = 0 6 E − A = ( 1 − 1 2 0 0 0 0 0 0 0 ) ∴ λ = 6 对应的线性无关特征向量 α 1 = ( 1 2 1 0 ) , α 2 = ( 0 0 1 ) 2 E + A = ( 1 1 2 0 0 0 1 0 0 0 ) ∴ λ = − 2 对应的线性无关特征向量 α 3 = ( − 1 2 1 0 ) 令 P = ( α 1 α 2 α 3 ) = ( 1 2 0 − 1 2 1 0 1 0 1 0 ) ∴ P − 1 A P = ( 6 6 − 2 )
\begin{array}{ll}
& \det(\lambda\boldsymbol{E} - \boldsymbol{A}) =
\left\vert
\begin{smallmatrix}
\lambda -2 & -2 & 0 \\
-8 & \lambda -2 & -a \\
0 & 0 & \lambda-6
\end{smallmatrix}
\right\vert = (\lambda-6)
\left\vert
\begin{smallmatrix}
\lambda - 2 & -2 \\
-8 & \lambda-2
\end{smallmatrix}
\right\vert = (\lambda-6)^{2}(\lambda+2) = 0 \\
\therefore & \lambda_{1} =\lambda_{2} = 6, \lambda_{3} = -2\\
\because & \boldsymbol{A}\text{可对角化} \\
\therefore & r(6 \boldsymbol{E} - \boldsymbol{A}) = 1 \\
& 6 \boldsymbol{E} - \boldsymbol{A} =
\left(
\begin{smallmatrix}
4 & -2 & 0 \\
-8 & 4 & -a \\
0 & 0 & 0
\end{smallmatrix}
\right) \\
\therefore & a = 0 \\\\
& 6 \boldsymbol{E} - \boldsymbol{A} =
\left(
\begin{smallmatrix}
1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{smallmatrix}
\right)\\
\therefore & \lambda = 6 \text{对应的线性无关特征向量} \boldsymbol{\alpha}_{1} =
\left(
\begin{smallmatrix}
\frac{1}{2} \\ 1 \\0
\end{smallmatrix}
\right), \boldsymbol{\alpha}_{2} =
\left(
\begin{smallmatrix}
0 \\ 0 \\ 1
\end{smallmatrix}
\right)\\
& 2 \boldsymbol{E} + \boldsymbol{A} =
\left(
\begin{smallmatrix}
1 & \frac{1}{2} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{smallmatrix}
\right) \\
\therefore & \lambda = -2 \text{对应的线性无关特征向量} \boldsymbol{\alpha}_{3} =
\left(
\begin{smallmatrix}
-\frac{1}{2} \\ 1 \\ 0
\end{smallmatrix}
\right)\\
& \text{令} \boldsymbol{P} =
\left(
\begin{matrix}
\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \boldsymbol{\alpha}_{3}
\end{matrix}
\right) =
\left(
\begin{smallmatrix}
\frac{1}{2} & 0 & -\frac{1}{2} \\
1 & 0 & 1 \\
0 & 1 & 0
\end{smallmatrix}
\right) \\
\therefore & \boldsymbol{P}^{-1}\boldsymbol{AP} =
\left(
\begin{smallmatrix}
6 \\
& 6 \\
&&-2
\end{smallmatrix}
\right)\\
\end{array}
∴ ∵ ∴ ∴ ∴ ∴ ∴ det ( λ E − A ) = ∣ ∣ λ − 2 − 8 0 − 2 λ − 2 0 0 − a λ − 6 ∣ ∣ = ( λ − 6 ) ∣ ∣ λ − 2 − 8 − 2 λ − 2 ∣ ∣ = ( λ − 6 ) 2 ( λ + 2 ) = 0 λ 1 = λ 2 = 6 , λ 3 = − 2 A 可对角化 r ( 6 E − A ) = 1 6 E − A = ( 4 − 8 0 − 2 4 0 0 − a 0 ) a = 0 6 E − A = ( 1 0 0 − 2 1 0 0 0 0 0 ) λ = 6 对应的线性无关特征向量 α 1 = ( 2 1 1 0 ) , α 2 = ( 0 0 1 ) 2 E + A = ( 1 0 0 2 1 0 0 0 1 0 ) λ = − 2 对应的线性无关特征向量 α 3 = ( − 2 1 1 0 ) 令 P = ( α 1 α 2 α 3 ) = ( 2 1 1 0 0 0 1 − 2 1 1 0 ) P − 1 AP = ( 6 6 − 2 )
设 A = ( 0 0 1 x 1 y 1 0 0 ) \boldsymbol{A} = \left( \begin{smallmatrix} 0 & 0 & 1\\ x & 1 & y \\ 1 & 0 & 0 \end{smallmatrix} \right) A = ( 0 x 1 0 1 0 1 y 0 ) 有三个线性无关特征向量,求 x , y x,y x , y 所满足的条件
det ( λ E − A ) = ∣ λ 0 − 1 − x λ − 1 − y − 1 0 λ ∣ = λ 2 ( λ − 1 ) − ( λ − 1 ) = ( λ − 1 ) 2 ( λ + 1 ) = 0 ∴ λ 1 = λ 2 = 1 , λ 3 = − 1 ∵ A 有三个线性无关特征向量 r ( E − A ) = 1 ∴ r ( 1 0 − 1 − x 0 − y − 1 0 1 ) = 1 ∴ x = − y
\begin{array}{ll}
& \det(\lambda\boldsymbol{E} - \boldsymbol{A}) =
\left\vert
\begin{smallmatrix}
\lambda & 0 & -1 \\
-x & \lambda - 1 & -y \\
-1 & 0 & \lambda
\end{smallmatrix}
\right\vert = \lambda^{2}(\lambda -1) - (\lambda - 1) = (\lambda -1)^{2}(\lambda +1) = 0 \\
\therefore & \lambda_{1} = \lambda_{2} = 1,\lambda_{3} = -1 \\
\because & \boldsymbol{A} \text{有三个线性无关特征向量} \\
& r(\boldsymbol{E} - \boldsymbol{A}) = 1 \\
\therefore & r
\left(
\begin{smallmatrix}
1 & 0 & -1 \\
-x & 0 & -y \\
-1 & 0 & 1
\end{smallmatrix}
\right) = 1\\
\therefore & x = -y \\
\end{array}
∴ ∵ ∴ ∴ det ( λ E − A ) = ∣ ∣ λ − x − 1 0 λ − 1 0 − 1 − y λ ∣ ∣ = λ 2 ( λ − 1 ) − ( λ − 1 ) = ( λ − 1 ) 2 ( λ + 1 ) = 0 λ 1 = λ 2 = 1 , λ 3 = − 1 A 有三个线性无关特征向量 r ( E − A ) = 1 r ( 1 − x − 1 0 0 0 − 1 − y 1 ) = 1 x = − y