Section01_概念

  1. 二次型 f=XAX{标准二次型A为对角阵非标准二次型A为对称但不对角矩阵f = \boldsymbol{X}^{\intercal}\boldsymbol{AX} \begin{cases} \text{标准二次型} \Leftrightarrow \boldsymbol{A} \text{为对角阵}\\ \text{非标准二次型} \Leftrightarrow \boldsymbol{A} \text{为对称但不对角矩阵} \end{cases}
  2. 标准化 f=XAX=P可逆X=PYY(PAP)Y f = \boldsymbol{X}^{\intercal}\boldsymbol{AX} \xlongequal[\boldsymbol{P} \text{可逆}]{\boldsymbol{X} = \boldsymbol{PY}} \boldsymbol{Y}^{\intercal}(\boldsymbol{P}^{\intercal}\boldsymbol{AP})\boldsymbol{Y}
    • PAP=(1n)\boldsymbol{P}^{\intercal}\boldsymbol{AP} = \left( \begin{matrix} \ell_{1} \\ & \ddots \\ & & \ell_{n} \end{matrix} \right),则 f=1y12++nyn2f = \ell_{1}y_{1}^{2} + \cdots + \ell_{n}y_{n}^{2}

      Notes

      1. X=PY\boldsymbol{X} = \boldsymbol{PY}P\boldsymbol{P} 可逆
      2. PAP=(1n)\boldsymbol{P}^{\intercal}\boldsymbol{AP} = \left( \begin{smallmatrix} \ell_{1} \\ & \ddots \\ & & \ell_{n} \end{smallmatrix} \right)
      3. 矩阵合同 A,B\boldsymbol{A}, \boldsymbol{B}nn 阶方阵,若 \exists 可逆阵 P\boldsymbol{P},使得 PAP=B\boldsymbol{P}^{\intercal}\boldsymbol{AP} = \boldsymbol{B},称 A\boldsymbol{A}B\boldsymbol{B} 合同,记为 AB\boldsymbol{A}\cong \boldsymbol{B}

results matching ""

    No results matching ""