Section01_定义

基本概念

  1. 矩阵 A=(a11a12a1na21a22a2nam1am2amn)(aij)m×n\boldsymbol{A} = \left( \begin{matrix} a_{11} & a_{12} &\cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} &\cdots & a_{mn} \\ \end{matrix} \right)\triangleq (a_{ij})_{m\times n}
    1.  aij=0,A=0\forall\ a_{ij} = 0, \boldsymbol{A} = \boldsymbol{0}
    2. m=nm=nA\boldsymbol{A} 为方阵
  2. 同型矩阵与矩阵相等 Am×n,Bm×n\boldsymbol{A}_{m\times n},\boldsymbol{B}_{m\times n} 称谓同型矩阵,设 A=(aij)m×n,B=(bij)m×n\boldsymbol{A} = (a_{ij})_{m\times n}, \boldsymbol{B} = (b_{ij})_{m\times n},若  aij=bij\forall\ a_{ij}= b_{ij},则 A=B\boldsymbol{A} = \boldsymbol{B}
  3. 三则运算
    1. Am×n=(a11a12a1na21a22a2nam1am2amn),Bm×n=(b11b12b1nb21b22b2nbm1bm2bmn)\boldsymbol{A}_{m\times n} = \left( \begin{matrix} a_{11} & a_{12} &\cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} &\cdots & a_{mn} \\ \end{matrix} \right), \boldsymbol{B}_{m\times n} = \left( \begin{matrix} b_{11} & b_{12} &\cdots & b_{1n} \\ b_{21} & b_{22} &\cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} &\cdots & b_{mn} \\ \end{matrix} \right) A±B=(a11±b11a12±b12a1n±b1na21±b21a22±b22a2n±b2nam1±bm1am2±bm2amn±bmn)=(aij±bij)m×n \boldsymbol{A}\pm \boldsymbol{B} = \left( \begin{matrix} a_{11}\pm b_{11} & a_{12}\pm b_{12} & \cdots & a_{1n}\pm b_{1n} \\ a_{21}\pm b_{21} & a_{22}\pm b_{22} & \cdots & a_{2n}\pm b_{2n} \\ \vdots &\vdots &\ddots & \vdots \\ a_{m1}\pm b_{m1} & a_{m2}\pm b_{m2} & \cdots & a_{mn}\pm b_{mn} \\ \end{matrix} \right) = (a_{ij}\pm b_{ij})_{m\times n}
    2. kA=(ka11ka12ka1nka21ka22ka2nkam1kam2kamn)=(kaij)m×nk\cdot \boldsymbol{A} = \left( \begin{matrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{matrix} \right) = (ka_{ij})_{m\times n}
    3. Am×n=(a11a12a1na21a22a2nam1am2amn),Bn×s=(b11b12b1sb21b22b2sbn1bn2bns)\boldsymbol{A}_{m\times n} = \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{matrix} \right), \boldsymbol{B}_{n\times s} = \left( \begin{matrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{matrix} \right) AB=Cm×s=(cij)m×scij=ai1b1j+ai2b2j++ainbnj \begin{split} &\boldsymbol{AB} = \boldsymbol{C}_{m\times s} = (c_{ij})_{m\times s} \\ &c_{ij} = a_{i 1}b_{1j} + a_{i2}b_{2j} +\cdots + a_{in}b_{nj} \end{split}

      Notes

      1. A0,B0AB0\boldsymbol{A} \ne \boldsymbol{0}, \boldsymbol{B}\ne \boldsymbol{0} \nRightarrow \boldsymbol{AB}\ne \boldsymbol{0}

        A=(1111)0,B=(1111)0\boldsymbol{A} = \left( \begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix} \right) \ne \boldsymbol{0}, \boldsymbol{B} = \left( \begin{matrix} 1 & -1 \\ -1 & 1 \\ \end{matrix} \right)\ne \boldsymbol{0}AB=0\boldsymbol{AB} = \boldsymbol{0}

      2. A0Ak0\boldsymbol{A} \ne \boldsymbol{0} \nRightarrow \boldsymbol{A}^{k} \ne \boldsymbol{0}

        A=(0100)0\boldsymbol{A} = \left( \begin{matrix} 0 & 1 \\ 0 & 0 \end{matrix} \right)\ne \boldsymbol{0}A2=0\boldsymbol{A}^{2} = \boldsymbol{0}

      3. AB\boldsymbol{AB}BA\boldsymbol{BA} 不一定相等
      4. 对于 f(x)=anxn++a1x+a0f(x) = a_{n}x^{n}+\cdots + a_{1}x + a_{0},将 An×n\boldsymbol{A}_{n\times n} 代入,则 f(A)=anAn++a1A+a0Ef(\boldsymbol{A}) = a_{n}\boldsymbol{A}^{n} + \cdots + a_{1}\boldsymbol{A}+a_{0}\boldsymbol{E}f(A)f(\boldsymbol{A}) 称为 A\boldsymbol{A} 的矩阵多项式,==f(A)f(\boldsymbol{A}) 可像多项式一样处理==

        x2x2(x+1)(x2)A2A2E(A+1)(A2) \begin{split} x^{2} - x - 2 & \Rightarrow (x+1)(x-2) \\ \boldsymbol{A}^{2} - \boldsymbol{A} - 2 \boldsymbol{E} & \Rightarrow (\boldsymbol{A}+1)(\boldsymbol{A}-2) \end{split}

      5. 线性方程组的矩阵形式 A=(a11a12a1na21a22a2nam1am2amn)x=(x1x2xn)β=(b1b2bm)AX=0{a11x1+a12x2++a1nxn=0am1x1+am2x2++amnxn=0AX=β{a11x1+a12x2++a1nxn=b1am1x1+am2x2++amnxn=bm \begin{split} & \boldsymbol{A} = \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{matrix} \right) \\ & \boldsymbol{x} = \left( \begin{matrix} x_{1}\\ x_{2}\\ \vdots\\x_{n} \end{matrix} \right)\quad \boldsymbol{\beta} = \left( \begin{matrix} b_{1} \\ b_{2} \\\vdots \\b_{m} \end{matrix} \right) \\\\ & \boldsymbol{AX} = \boldsymbol{0} \Leftrightarrow \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = 0 \\ \cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = 0 \\ \end{cases} \\ & \boldsymbol{AX} = \boldsymbol{\beta} \Leftrightarrow \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ \cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \end{split}
  4. 伴随矩阵 对于 A\boldsymbol{A}n×nn\times n 的方阵,则称 A=(A11A21An1A12A22An2A1nA2nAnn)\boldsymbol{A}^{*} = \left( \begin{matrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \\ \end{matrix} \right)A\boldsymbol{A} 的伴随矩阵 (注意此处为各元素对应的代数余子式组成矩阵的转置)
    • AA=AE\boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E}

Q1 矩阵研究什么

背景 对于方程 ax=bax=b

  1. a0a\ne0 时,1aa=1\frac{1}{a}\cdot a = 1,则 1aax=1abx=1ab\frac{1}{a}\cdot ax = \frac{1}{a}b\Rightarrow x = \frac{1}{a}b
  2. a=0a = 0 {b=0,无数解b0,无解\begin{cases} b = 0, & \text{无数解} \\ b \ne 0, & \text{无解} \end{cases}

相似问题 对于方程组 AX=β\boldsymbol{AX} = \boldsymbol{\beta}

  1. 对于 An×n\boldsymbol{A}_{n\times n} Bn×n\exists\ \boldsymbol{B}_{n\times n},使得 BA=E\boldsymbol{BA} = \boldsymbol{E} (==逆矩阵==),则 AX=βBAX=BβX=Bβ\boldsymbol{AX}=\boldsymbol{\beta}\Rightarrow \boldsymbol{BAX} = \boldsymbol{B\beta}\Rightarrow \boldsymbol{X} = \boldsymbol{B\beta}
  2. {An×n,但不满秩Am×n,mn\begin{cases} \boldsymbol{A}_{n\times n}, \text{但不满秩} \\ \boldsymbol{A}_{m\times n}, \text{且} m \ne n \end{cases} (==矩阵的秩==)

results matching ""

    No results matching ""