Appendix_常见题型
型二 线性方程组解的结构与性质
设 A \boldsymbol{A} A 为四阶矩阵,r ( A ) = 3 r(\boldsymbol{A}) = 3 r ( A ) = 3 ,且 A \boldsymbol{A} A 的每行元素之和为 0 0 0 ,求方程组 A X = 0 \boldsymbol{AX} = \boldsymbol{0} AX = 0 的解
∵ A 的每行元素之和为 0 ∴ A ( 1 1 1 1 ) = 0 ∴ A X = 0 的通解 k ( 1 1 1 1 )
\begin{array}{ll}
\because & \boldsymbol{A}\text{的每行元素之和为}0 \\
\therefore & \boldsymbol{A}
\left(
\begin{matrix}
1 \\
1 \\
1 \\
1
\end{matrix}
\right) = \boldsymbol{0}\\
\therefore & \boldsymbol{AX} = \boldsymbol{0}\text{的通解} k
\left(
\begin{matrix}
1 \\
1 \\
1 \\
1
\end{matrix}
\right)\\
\end{array}
∵ ∴ ∴ A 的每行元素之和为 0 A ⎝ ⎛ 1 1 1 1 ⎠ ⎞ = 0 AX = 0 的通解 k ⎝ ⎛ 1 1 1 1 ⎠ ⎞
设 A \boldsymbol{A} A 为四阶矩阵,r ( A ) < 4 r(\boldsymbol{A}) < 4 r ( A ) < 4 ,且 A 21 ≠ 0 A_{21}\ne 0 A 21 = 0 ,求方程组 A X = 0 \boldsymbol{AX} = \boldsymbol{0} AX = 0 的解
∵ A 为四阶矩阵 r ( A ) < 4 , A 21 ≠ 0 ∴ r ( A ) = 3 ∴ A ∗ = ( A 11 A 21 A 31 A 41 A 12 A 22 A 32 A 42 A 13 A 23 A 33 A 43 A 14 A 24 A 34 A 44 ) ∵ A A ∗ = ∣ A ∣ E ∴ A A ∗ = 0 ∵ A 21 ≠ 0 ∴ x = k ( A 21 A 22 A 23 A 24 )
\begin{array}{ll}
\because & \boldsymbol{A} \text{为四阶矩阵} \\
& r(\boldsymbol{A})< 4, A_{21} \ne 0 \\
\therefore & r(\boldsymbol{A})=3 \\
\therefore & \boldsymbol{A}^{*} =
\left(
\begin{matrix}
A_{11} & A_{21} & A_{31} & A_{41} \\
A_{12} & A_{22} & A_{32} & A_{42} \\
A_{13} & A_{23} & A_{33} & A_{43} \\
A_{14} & A_{24} & A_{34} & A_{44} \\
\end{matrix}
\right)\\
\because & \boldsymbol{AA}^{*} = \vert \boldsymbol{A} \vert \boldsymbol{E} \\
\therefore & \boldsymbol{AA}^{*} = \boldsymbol{0} \\
\because & A_{21} \ne 0 \\
\therefore & \boldsymbol{x} = k
\left(
\begin{matrix}
A_{21} \\
A_{22} \\
A_{23} \\
A_{24} \\
\end{matrix}
\right)\\
\end{array}
∵ ∴ ∴ ∵ ∴ ∵ ∴ A 为四阶矩阵 r ( A ) < 4 , A 21 = 0 r ( A ) = 3 A ∗ = ⎝ ⎛ A 11 A 12 A 13 A 14 A 21 A 22 A 23 A 24 A 31 A 32 A 33 A 34 A 41 A 42 A 43 A 44 ⎠ ⎞ AA ∗ = ∣ A ∣ E AA ∗ = 0 A 21 = 0 x = k ⎝ ⎛ A 21 A 22 A 23 A 24 ⎠ ⎞
设 A \boldsymbol{A} A 为 n n n 阶矩阵,且 A 11 ≠ 0 A_{11}\ne 0 A 11 = 0 ,若 η 1 , η 2 , η 3 \eta_{1}, \eta_{2}, \eta_{3} η 1 , η 2 , η 3 为非其次线性方程组 A X = β \boldsymbol{AX} = \boldsymbol{\beta} AX = β 的不同解,则非齐次线性方程组 A X = 0 \boldsymbol{AX} = \boldsymbol{0} AX = 0 的基础解系所含的线性无关解的向量个数为( )
A. 1 B. 2 C. 3 D. 4
\begin{array}{cccc}
\text{A. }1 & \text{B. }2 & \text{C. } 3 & \text{D. }4
\end{array}
A. 1 B. 2 C. 3 D. 4
∵ A 11 ≠ 0 ∴ r ( A ) ≥ n − 1 ∵ η 1 , η 2 , η 3 为非其次线性方程组 A X = β 的不同解 ∴ r ( A ) = r ( A ˉ ) < n ∴ r ( A ) = n − 1 ∴ A X = 0 基础解系所含线性无关向量个数为 1
\begin{array}{ll}
\because & A_{11}\ne 0\\
\therefore & r(\boldsymbol{A}) \ge n-1 \\
\because & \eta_{1}, \eta_{2},\eta_{3}\text{为非其次线性方程组}\boldsymbol{AX} = \boldsymbol{\beta}\text{的不同解} \\
\therefore & r(\boldsymbol{A}) = r(\bar{\boldsymbol{A}}) < n \\
\therefore & r(\boldsymbol{A}) = n-1 \\
\therefore & \boldsymbol{AX} = \boldsymbol{0}\text{基础解系所含线性无关向量个数为}1 \\
\end{array}
∵ ∴ ∵ ∴ ∴ ∴ A 11 = 0 r ( A ) ≥ n − 1 η 1 , η 2 , η 3 为非其次线性方程组 AX = β 的不同解 r ( A ) = r ( A ˉ ) < n r ( A ) = n − 1 AX = 0 基础解系所含线性无关向量个数为 1
设 η 1 = ( 1 − 2 1 2 ) , η 2 = ( 0 1 0 − 1 ) , η 3 = ( 2 1 3 − 2 ) \eta_{1} = \left( \begin{smallmatrix} 1 \\ -2 \\ 1 \\ 2 \end{smallmatrix} \right) ,\eta_{2} = \left( \begin{smallmatrix} 0 \\ 1 \\ 0 \\ -1 \end{smallmatrix} \right) ,\eta_{3} = \left( \begin{smallmatrix} 2 \\ 1 \\ 3 \\ -2 \end{smallmatrix} \right) η 1 = ( 1 − 2 1 2 ) , η 2 = ( 0 1 0 − 1 ) , η 3 = ( 2 1 3 − 2 ) 为非齐次线性方程组 { x 1 + a 2 x 2 + 4 x 3 − x 4 = d 1 b 1 x 1 + x 2 + b 3 x 3 + b 4 x 4 = d 2 2 x 1 + c 2 x 2 + c 3 x 3 + x 4 = d 2 \begin{cases} x_{1} + a_{2}x_{2} + 4x_{3} - x_{4} = d_{1} \\ b_{1}x_{1} + x_{2} + b_{3}x_{3} + b_{4}x_{4} = d_{2} \\ 2x_{1} + c_{2}x_{2} + c_{3}x_{3} + x_{4} = d_{2} \\ \end{cases} ⎩ ⎨ ⎧ x 1 + a 2 x 2 + 4 x 3 − x 4 = d 1 b 1 x 1 + x 2 + b 3 x 3 + b 4 x 4 = d 2 2 x 1 + c 2 x 2 + c 3 x 3 + x 4 = d 2 的三个解 ,求该方程组的通解
A ˉ = ( 1 a 2 4 − 1 d 1 b 1 1 b 3 b 4 d 2 2 c 2 c 3 1 d 3 ) ∵ 第1和第3行一定不成比例 ∴ r ( A ) ≥ 2 ∵ ζ 1 = η 1 − η 2 = ( 1 − 3 1 3 ) ; ζ 2 = η 1 − η 3 = ( − 1 − 3 − 2 4 ) ∴ ζ 1 , ζ 2 不成比例 A X = 0 的通解由至少两个线性无关的解向量构成 ∴ 4 − r ( A ) ≥ 2 ⇒ r ( A ) ≤ 2 ∴ r ( A ) = 2 ∴ 通解 x = k 1 ζ 1 + k 2 ζ 2 + η 1
\begin{array}{ll}
& \bar{\boldsymbol{A}} =
\left(
\begin{matrix}
1 & a_{2} & 4 & -1 & d_{1}\\
b_{1} & 1 & b_{3} & b_{4} & d_{2} \\
2 & c_{2} & c_{3} & 1 & d_{3} \\
\end{matrix}
\right) \\
\because & \text{第1和第3行一定不成比例} \\
\therefore & r(\boldsymbol{A}) \ge 2 \\
\because & \zeta_{1} = \eta_{1} - \eta_{2} =
\left(
\begin{smallmatrix}
1 \\
-3 \\
1 \\
3
\end{smallmatrix}
\right); \zeta_{2} = \eta_{1} - \eta_{3} =
\left(
\begin{smallmatrix}
-1 \\
-3 \\
-2 \\
4
\end{smallmatrix}
\right)\\
\therefore & \zeta_{1}, \zeta_{2}\text{不成比例}\\
& \boldsymbol{AX} = \boldsymbol{0} \text{的通解由至少两个线性无关的解向量构成} \\
\therefore & 4 - r(\boldsymbol{A}) \ge 2 \Rightarrow r(\boldsymbol{A})\le 2\\
\therefore & r(\boldsymbol{A}) = 2 \\
\therefore & \text{通解 } \boldsymbol{x} = k_{1}\zeta_{1} + k_{2}\zeta_{2} + \eta_{1} \\
\end{array}
∵ ∴ ∵ ∴ ∴ ∴ ∴ A ˉ = ⎝ ⎛ 1 b 1 2 a 2 1 c 2 4 b 3 c 3 − 1 b 4 1 d 1 d 2 d 3 ⎠ ⎞ 第 1 和第 3 行一定不成比例 r ( A ) ≥ 2 ζ 1 = η 1 − η 2 = ( 1 − 3 1 3 ) ; ζ 2 = η 1 − η 3 = ( − 1 − 3 − 2 4 ) ζ 1 , ζ 2 不成比例 AX = 0 的通解由至少两个线性无关的解向量构成 4 − r ( A ) ≥ 2 ⇒ r ( A ) ≤ 2 r ( A ) = 2 通解 x = k 1 ζ 1 + k 2 ζ 2 + η 1
设 A = ( α 1 α 2 α 3 α 4 α 5 ) \boldsymbol{A} = \left( \begin{matrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \boldsymbol{\alpha}_{3} & \boldsymbol{\alpha}_{4} & \boldsymbol{\alpha}_{5} \end{matrix} \right) A = ( α 1 α 2 α 3 α 4 α 5 ) ,其中 α 1 , α 3 , α 4 \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} α 1 , α 3 , α 4 线性无关,α 2 = α 1 + 2 α 3 − α 4 , α 5 = α 1 − α 2 − 2 α 3 + 3 α 4 \boldsymbol{\alpha}_{2} = \boldsymbol{\alpha}_{1} + 2 \boldsymbol{\alpha}_{3}- \boldsymbol{\alpha}_{4}, \boldsymbol{\alpha}_{5} = \boldsymbol{\alpha}_{1}-\boldsymbol{\alpha}_{2} - 2 \boldsymbol{\alpha}_{3} + 3 \boldsymbol{\alpha}_{4} α 2 = α 1 + 2 α 3 − α 4 , α 5 = α 1 − α 2 − 2 α 3 + 3 α 4 ,求方程组 A X = 0 \boldsymbol{AX} = \boldsymbol{0} AX = 0 的解
∵ α 1 , α 3 , α 4 线性无关 ∴ r ( A ) = 3 ∵ α 1 − α 2 + 2 α 3 − α 4 + 0 α 5 = 0 α 1 − α 2 − 2 α 3 + 3 α 4 − α 5 = 0 ∴ x = k 1 ( 1 − 1 2 − 1 0 ) + k 2 ( 1 − 1 − 2 3 − 1 )
\begin{array}{ll}
\because & \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{3},\boldsymbol{\alpha}_{4} \text{线性无关} \\
\therefore & r(\boldsymbol{A}) = 3 \\
\because & \boldsymbol{\alpha}_{1} - \boldsymbol{\alpha}_{2} + 2\boldsymbol{\alpha}_{3}- \boldsymbol{\alpha}_{4} + 0 \boldsymbol{\alpha}_{5}= \boldsymbol{0} \\
& \boldsymbol{\alpha}_{1} - \boldsymbol{\alpha}_{2} - 2 \boldsymbol{\alpha}_{3} +3 \boldsymbol{\alpha}_{4} - \boldsymbol{\alpha}_{5} = \boldsymbol{0} \\
\therefore & \boldsymbol{x} = k_{1}
\left(
\begin{smallmatrix}
1 \\
-1 \\
2 \\
-1 \\
0
\end{smallmatrix}
\right) + k_{2}
\left(
\begin{smallmatrix}
1 \\
-1 \\
-2 \\
3 \\
-1
\end{smallmatrix}
\right)
\\
\end{array}
∵ ∴ ∵ ∴ α 1 , α 3 , α 4 线性无关 r ( A ) = 3 α 1 − α 2 + 2 α 3 − α 4 + 0 α 5 = 0 α 1 − α 2 − 2 α 3 + 3 α 4 − α 5 = 0 x = k 1 ( 1 − 1 2 − 1 0 ) + k 2 ( 1 − 1 − 2 3 − 1 )
型三 含参数方程组解的讨论
设 A = ( 1 2 1 2 0 1 t t 1 t 0 1 ) \boldsymbol{A} = \left( \begin{smallmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & t & t \\ 1 & t & 0 & 1 \\ \end{smallmatrix} \right) A = ( 1 0 1 2 1 t 1 t 0 2 t 1 ) ,且 A X = 0 \boldsymbol{AX}= \boldsymbol{0} AX = 0 含两个线性无关的解向量,求 A X = 0 \boldsymbol{AX}= \boldsymbol{0} AX = 0 的通解
A = ( 1 2 1 2 0 1 t t 1 t 0 1 ) → ( 1 2 1 2 0 1 t t 0 t − 2 − 1 − 1 ) ∵ A X = 0 含两个线性无关的解向量 ∴ 4 − r ( A ) = 2 ⇒ r ( A ) = 2 ∴ t − 2 = − 1 t = − 1 t ∴ t = 1 A → ( 1 2 1 2 0 1 1 1 0 0 0 0 ) → ( 1 0 − 1 0 0 1 1 1 0 0 0 0 ) ∴ x = k 1 ( 1 − 1 1 0 ) + k 2 ( 0 − 1 0 1 )
\begin{array}{ll}
& \boldsymbol{A} =
\left(
\begin{smallmatrix}
1 & 2 & 1 & 2 \\
0 & 1 & t & t \\
1 & t & 0 & 1
\end{smallmatrix}
\right) \rightarrow
\left(
\begin{smallmatrix}
1 & 2 & 1 & 2 \\
0 & 1 & t & t \\
0 & t-2 & -1 & -1
\end{smallmatrix}
\right) \\
\because & \boldsymbol{AX}= \boldsymbol{0} \text{含两个线性无关的解向量} \\
\therefore & 4 -r(\boldsymbol{A}) = 2 \Rightarrow r(\boldsymbol{A}) = 2 \\
\therefore & t-2 = \frac{-1}{t} = \frac{-1}{t} \\
\therefore & t = 1 \\
& \boldsymbol{A} \rightarrow
\left(
\begin{smallmatrix}
1 & 2 & 1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{smallmatrix}
\right) \rightarrow
\left(
\begin{smallmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{smallmatrix}
\right) \\
\therefore & \boldsymbol{x} = k_{1}
\left(
\begin{smallmatrix}
1 \\
-1 \\
1 \\
0 \\
\end{smallmatrix}
\right) + k_{2}
\left(
\begin{smallmatrix}
0 \\
-1 \\
0 \\
1 \\
\end{smallmatrix}
\right)\\
\end{array}
∵ ∴ ∴ ∴ ∴ A = ( 1 0 1 2 1 t 1 t 0 2 t 1 ) → ( 1 0 0 2 1 t − 2 1 t − 1 2 t − 1 ) AX = 0 含两个线性无关的解向量 4 − r ( A ) = 2 ⇒ r ( A ) = 2 t − 2 = t − 1 = t − 1 t = 1 A → ( 1 0 0 2 1 0 1 1 0 2 1 0 ) → ( 1 0 0 0 1 0 − 1 1 0 0 1 0 ) x = k 1 ( 1 − 1 1 0 ) + k 2 ( 0 − 1 0 1 )
已知齐次线性方程组 { x 1 − x 2 + 2 x 3 = 0 2 x 1 + ( a − 3 ) x 2 + 5 x 3 = 0 − x 1 + x 2 + ( 4 − a ) x 3 = 0 a x 1 − a x 2 + ( 2 a + 3 ) x 3 = 0 \begin{cases} x_{1} - x_{2} + 2x_{3} = 0 \\ 2x_{1} + (a-3)x_{2} + 5x_{3} = 0 \\ -x_{1} + x_{2} + (4-a)x_{3} = 0 \\ ax_{1} - ax_{2} + (2a +3)x_{3} = 0 \\ \end{cases} ⎩ ⎨ ⎧ x 1 − x 2 + 2 x 3 = 0 2 x 1 + ( a − 3 ) x 2 + 5 x 3 = 0 − x 1 + x 2 + ( 4 − a ) x 3 = 0 a x 1 − a x 2 + ( 2 a + 3 ) x 3 = 0 有非零解,求常数 a a a ,并求其通解
A = ( 1 − 1 2 2 a − 3 5 − 1 1 4 − a a − a 2 a + 3 ) → ( 1 − 1 2 0 a − 1 1 0 0 6 − a 0 0 3 ) ∵ A X = 0 有非零解 ∴ r ( A ) < 3 ∴ a − 1 = 0 ⇒ a = 1 ∴ A = ( 1 − 1 2 0 0 1 0 0 0 0 0 0 ) → ( 1 − 1 0 0 0 1 0 0 0 0 0 0 ) ∴ x = k ( 1 1 0 )
\begin{array}{ll}
& \boldsymbol{A} =
\left(
\begin{smallmatrix}
1 & -1 & 2 \\
2 & a-3 & 5 \\
-1 & 1 & 4-a \\
a & -a & 2a+3 \\
\end{smallmatrix}
\right) \rightarrow
\left(
\begin{smallmatrix}
1 & -1 & 2 \\
0 & a-1 & 1 \\
0 & 0 & 6-a \\
0 & 0 & 3 \\
\end{smallmatrix}
\right) \\
\because & \boldsymbol{AX} = \boldsymbol{0}\text{有非零解} \\
\therefore & r(\boldsymbol{A}) < 3 \\
\therefore & a- 1 = 0\Rightarrow a = 1 \\
\therefore & \boldsymbol{A} =
\left(
\begin{smallmatrix}
1 & -1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{smallmatrix}
\right)\rightarrow \left(
\begin{smallmatrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{smallmatrix}
\right)\\
\therefore & \boldsymbol{x} = k
\left(
\begin{smallmatrix}
1 \\
1 \\
0
\end{smallmatrix}
\right) \\
\end{array}
∵ ∴ ∴ ∴ ∴ A = ( 1 2 − 1 a − 1 a − 3 1 − a 2 5 4 − a 2 a + 3 ) → ( 1 0 0 0 − 1 a − 1 0 0 2 1 6 − a 3 ) AX = 0 有非零解 r ( A ) < 3 a − 1 = 0 ⇒ a = 1 A = ( 1 0 0 0 − 1 0 0 0 2 1 0 0 ) → ( 1 0 0 0 − 1 0 0 0 0 1 0 0 ) x = k ( 1 1 0 )
设方程组 ( 1 2 1 2 3 a + 2 1 a − 2 ) ( x 1 x 2 x 3 ) = ( 1 3 0 ) \left( \begin{smallmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \\ \end{smallmatrix} \right)\left( \begin{smallmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{smallmatrix} \right) = \left( \begin{smallmatrix} 1 \\ 3 \\ 0 \\ \end{smallmatrix} \right) ( 1 2 1 2 3 a 1 a + 2 − 2 ) ( x 1 x 2 x 3 ) = ( 1 3 0 ) ,讨论 a a a 的取值,使得方程组有唯一解,无解,无穷多个解,当方程组有无穷多解时,求出其通解
A ˉ = ( 1 2 1 1 2 3 a + 2 3 1 a − 2 0 ) → ( 1 2 1 1 0 − 1 a 1 0 a − 2 − 3 − 1 ) 当 r ( A ) = r ( A ˉ ) = 3 时,方程组有唯一解 ∴ − 1 a − 2 ≠ a − 3 ∴ a ≠ 3 且 a ≠ − 1 时,方程组有唯一解 当 r ( A ) ≠ r ( A ˉ ) 时,方程组无解 ∴ − 1 a − 2 = a − 3 ≠ − 1 ∴ a = − 1 时,方程组无解 当 r ( A ) = r ( A ˉ ) < 3 时,方程组有无数解 ∴ − 1 a − 2 = a − 3 = − 1 ∴ a = 3 时,方程组有无数解 ∴ A ˉ = ( 1 2 1 1 0 1 − 3 − 1 0 0 0 0 ) → ( 1 0 7 3 0 1 − 3 − 1 0 0 0 0 ) ∴ x = k ( − 7 3 1 ) + ( 3 − 1 0 )
\begin{array}{ll}
& \bar{\boldsymbol{A}} =
\left(
\begin{smallmatrix}
1 & 2 & 1 & 1 \\
2 & 3 & a+2 & 3 \\
1 & a & -2 & 0
\end{smallmatrix}
\right) \rightarrow
\left(
\begin{smallmatrix}
1 & 2 & 1 & 1 \\
0 & -1 & a & 1 \\
0 & a-2 & -3 & -1
\end{smallmatrix}
\right) \\
& \text{当} r(\boldsymbol{A}) = r(\bar{\boldsymbol{A}})=3 \text{时,方程组有唯一解} \\
\therefore & \frac{-1}{a-2} \ne \frac{a}{-3} \\
\therefore & a \ne 3 \text{且} a\ne -1 \text{时,方程组有唯一解} \\\\
& \text{当} r(\boldsymbol{A}) \ne r(\bar{\boldsymbol{A}}) \text{时,方程组无解} \\
\therefore & \frac{-1}{a-2} = \frac{a}{-3} \ne -1 \\
\therefore & a=-1 \text{时,方程组无解} \\ \\
& \text{当} r(\boldsymbol{A}) = r(\bar{\boldsymbol{A}})< 3 \text{时,方程组有无数解} \\
\therefore & \frac{-1}{a-2} = \frac{a}{-3} = -1 \\
\therefore & a = 3 \text{时,方程组有无数解} \\
\therefore & \bar{\boldsymbol{A}} =
\left(
\begin{smallmatrix}
1 & 2 & 1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0
\end{smallmatrix}
\right)\rightarrow
\left(
\begin{smallmatrix}
1 & 0 & 7 & 3 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0
\end{smallmatrix}
\right)\\
\therefore & \boldsymbol{x} = k
\left(
\begin{smallmatrix}
-7 \\
3 \\
1
\end{smallmatrix}
\right) +
\left(
\begin{smallmatrix}
3 \\
-1 \\
0
\end{smallmatrix}
\right)\\
\end{array}
∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ A ˉ = ( 1 2 1 2 3 a 1 a + 2 − 2 1 3 0 ) → ( 1 0 0 2 − 1 a − 2 1 a − 3 1 1 − 1 ) 当 r ( A ) = r ( A ˉ ) = 3 时,方程组有唯一解 a − 2 − 1 = − 3 a a = 3 且 a = − 1 时,方程组有唯一解 当 r ( A ) = r ( A ˉ ) 时,方程组无解 a − 2 − 1 = − 3 a = − 1 a = − 1 时,方程组无解 当 r ( A ) = r ( A ˉ ) < 3 时,方程组有无数解 a − 2 − 1 = − 3 a = − 1 a = 3 时,方程组有无数解 A ˉ = ( 1 0 0 2 1 0 1 − 3 0 1 − 1 0 ) → ( 1 0 0 0 1 0 7 − 3 0 3 − 1 0 ) x = k ( − 7 3 1 ) + ( 3 − 1 0 )
设 A = ( 1 a 0 0 0 1 a 0 0 0 1 a a 0 0 1 ) , β = ( 1 − 1 0 0 ) \boldsymbol{A} = \left( \begin{smallmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \\ \end{smallmatrix} \right), \boldsymbol{\beta} = \left( \begin{smallmatrix} 1 \\ -1 \\ 0 \\ 0 \end{smallmatrix} \right) A = ( 1 0 0 a a 1 0 0 0 a 1 0 0 0 a 1 ) , β = ( 1 − 1 0 0 )
计算 det ( A ) \det(\boldsymbol{A}) det ( A )
谈论 a a a 取何值时,方程组 A X = β \boldsymbol{AX} = \boldsymbol{\beta} AX = β 有无数个解,并求出其通解
det ( A ) = ∣ 1 a 0 0 0 1 a 0 0 0 1 a a 0 0 1 ∣ = 1 − a ∣ 0 a 0 0 1 a a 0 1 ∣ = 1 − a 4 ∵ A X = β 有无数个解 ∴ det ( A ) = 0 ∴ a = 1 或 a = − 1 当 a = 1 时 A ˉ = ( 1 1 0 0 1 0 1 1 0 − 1 0 0 1 1 0 1 0 0 1 0 ) → ( 1 1 0 0 1 0 1 1 0 − 1 0 0 1 1 0 0 − 1 0 1 − 1 ) → ( 1 1 0 0 1 0 1 1 0 − 1 0 0 1 1 0 0 0 1 1 − 2 ) → ( 1 1 0 0 1 0 1 1 0 − 1 0 0 1 1 0 0 0 0 0 − 2 ) ∴ r ( A ) ≠ r ( A ˉ ) ∴ 当 a = 1 时,此方程组无解 当 a = − 1 时 A ˉ = ( 1 − 1 0 0 1 0 1 − 1 0 − 1 0 0 1 − 1 0 − 1 0 0 1 0 ) → ( 1 − 1 0 0 1 0 1 − 1 0 − 1 0 0 1 − 1 0 0 − 1 0 1 1 ) → ( 1 − 1 0 0 1 0 1 − 1 0 − 1 0 0 1 − 1 0 0 0 − 1 1 0 ) → ( 1 − 1 0 0 1 0 1 − 1 0 − 1 0 0 1 − 1 0 0 0 0 0 0 ) → ( 1 0 0 − 1 0 0 1 0 − 1 − 1 0 0 1 − 1 0 0 0 0 0 0 ) ∴ r ( A ) = r ( A ˉ ) < 4 ∴ 当 a = 1 时,此方程组有无数解 ∴ x = k ( 1 1 1 1 ) + ( 0 − 1 0 0 )
\begin{array}{ll}
& \det(\boldsymbol{A}) =
\left\vert
\begin{smallmatrix}
1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1
\end{smallmatrix}
\right\vert = 1 - a
\left\vert
\begin{smallmatrix}
0 & a & 0 \\
0 & 1 & a \\
a & 0 &1
\end{smallmatrix}
\right\vert = 1-a^{4} \\\\
\because & \boldsymbol{AX} = \boldsymbol{\beta}\text{有无数个解} \\
\therefore & \det(\boldsymbol{A}) = 0 \\
\therefore & a = 1 \text{ 或 } a=-1 \\
& \text{当} a = 1 \text{时} \\
& \bar{\boldsymbol{A}} =
\left(
\begin{smallmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
\end{smallmatrix}
\right) \rightarrow
\left(
\begin{smallmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & 1 & -1 \\
\end{smallmatrix}
\right)\rightarrow
\left(
\begin{smallmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 \\
\end{smallmatrix}
\right) \\
& \rightarrow
\left(
\begin{smallmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -2 \\
\end{smallmatrix}
\right) \\
\therefore & r(\boldsymbol{A}) \ne r(\bar{\boldsymbol{A}}) \\
\therefore & \text{当}a=1 \text{时,此方程组无解} \\
& \text{当} a = -1 \text{时} \\
& \bar{\boldsymbol{A}} =
\left(
\begin{smallmatrix}
1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & -1 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
\end{smallmatrix}
\right) \rightarrow
\left(
\begin{smallmatrix}
1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & -1 & 0 \\
0 & -1 & 0 & 1 & 1 \\
\end{smallmatrix}
\right)\rightarrow
\left(
\begin{smallmatrix}
1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
\end{smallmatrix}
\right) \\
& \rightarrow
\left(
\begin{smallmatrix}
1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{smallmatrix}
\right) \rightarrow
\left(
\begin{smallmatrix}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 & -1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{smallmatrix}
\right)\\
\therefore & r(\boldsymbol{A}) = r(\bar{\boldsymbol{A}}) < 4 \\
\therefore & \text{当}a=1 \text{时,此方程组有无数解} \\
\therefore & \boldsymbol{x} =
k
\left(
\begin{smallmatrix}
1 \\
1 \\
1 \\
1
\end{smallmatrix}
\right) +
\left(
\begin{smallmatrix}
0 \\
-1 \\
0 \\
0
\end{smallmatrix}
\right)
\\
\end{array}
∵ ∴ ∴ ∴ ∴ ∴ ∴ ∴ det ( A ) = ∣ ∣ 1 0 0 a a 1 0 0 0 a 1 0 0 0 a 1 ∣ ∣ = 1 − a ∣ ∣ 0 0 a a 1 0 0 a 1 ∣ ∣ = 1 − a 4 AX = β 有无数个解 det ( A ) = 0 a = 1 或 a = − 1 当 a = 1 时 A ˉ = ( 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 − 1 0 0 ) → ( 1 0 0 0 1 1 0 − 1 0 1 1 0 0 0 1 1 1 − 1 0 − 1 ) → ( 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 − 1 0 − 2 ) → ( 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 − 1 0 − 2 ) r ( A ) = r ( A ˉ ) 当 a = 1 时,此方程组无解 当 a = − 1 时 A ˉ = ( 1 0 0 − 1 − 1 1 0 0 0 − 1 1 0 0 0 − 1 1 1 − 1 0 0 ) → ( 1 0 0 0 − 1 1 0 − 1 0 − 1 1 0 0 0 − 1 1 1 − 1 0 1 ) → ( 1 0 0 0 − 1 1 0 0 0 − 1 1 − 1 0 0 − 1 1 1 − 1 0 0 ) → ( 1 0 0 0 − 1 1 0 0 0 − 1 1 0 0 0 − 1 0 1 − 1 0 0 ) → ( 1 0 0 0 0 1 0 0 0 0 1 0 − 1 − 1 − 1 0 0 − 1 0 0 ) r ( A ) = r ( A ˉ ) < 4 当 a = 1 时,此方程组有无数解 x = k ( 1 1 1 1 ) + ( 0 − 1 0 0 )