Section01_定义

  1. 向量,零向量,模
    1. α=(a1an)\boldsymbol{\alpha} = \left( \begin{matrix} a_{1} \\ \vdots \\ a_{n} \end{matrix} \right)nn 维列向量,
    2. α=(00)\boldsymbol{\alpha} = \left( \begin{matrix} 0 \\ \vdots\\ 0 \end{matrix} \right) 为零向量
    3. α=a12+a22++an2=αα\vert \boldsymbol{\alpha} \vert = \sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}} = \sqrt{\boldsymbol{\alpha}^{\intercal}\boldsymbol{\alpha}} 称为"大小","长度","模"
      1. α=0\vert \boldsymbol{\alpha} \vert = 0,则 α=0\boldsymbol{\alpha} = \boldsymbol{0}
      2. α=1\vert \boldsymbol{\alpha} \vert = 1,则 α\boldsymbol{\alpha} 为单位向量(规范向量)
      3. α0, α=1αα\boldsymbol{\alpha} \ne \boldsymbol{0},\ \boldsymbol{\alpha}^{\circ} = \frac{1}{\vert \boldsymbol{\alpha} \vert}\cdot \boldsymbol{\alpha} 称为单位化
  2. 内积 对于 α=(a1an),β=(b1bn)\boldsymbol{\alpha} = \left( \begin{matrix} a_{1} \\ \vdots \\ a_{n} \end{matrix} \right), \boldsymbol{\beta} = \left( \begin{matrix} b_{1} \\ \vdots \\ b_{n} \end{matrix} \right)(α,β)=a1b1+a2b2++anbn(\boldsymbol{\alpha}, \boldsymbol{\beta}) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} 称为向量的内积

    Notes

    1. (α,β)=(β,α)=αβ=βα(\boldsymbol{\alpha}, \boldsymbol{\beta}) = (\boldsymbol{\beta}, \boldsymbol{\alpha}) = \boldsymbol{\alpha}^{\intercal}\boldsymbol{\beta} = \boldsymbol{\beta}^{\intercal}\boldsymbol{\alpha}
    2. (α,α)=αα=α2(\boldsymbol{\alpha}, \boldsymbol{\alpha}) = \boldsymbol{\alpha}^{\intercal}\boldsymbol{\alpha} = \vert \boldsymbol{\alpha} \vert^{2}
    3. (α,k1β1+k2β2++ksβs)=i=1ski(α,βi)(\boldsymbol{\alpha}, k_{1}\boldsymbol{\beta}_{1} + k_{2}\boldsymbol{\beta}_{2} + \cdots + k_{s}\boldsymbol{\beta}_{s})= \sum\limits_{i=1}^{s}k_{i}(\boldsymbol{\alpha}, \boldsymbol{\beta}_{i})
    4. (α,β)=0αβ(\boldsymbol{\alpha},\boldsymbol{\beta}) = 0\Leftrightarrow \boldsymbol{\alpha}\perp \boldsymbol{\beta},若 (α,β)=0(\boldsymbol{\alpha},\boldsymbol{\beta}) = 0,称 α\boldsymbol{\alpha}β\boldsymbol{\beta} 正交,记为 αβ\boldsymbol{\alpha}\perp \boldsymbol{\beta}
    5. 零向量同任何向量正交,也同任何向量平行

results matching ""

    No results matching ""